Graded Computation Tree Logic

Alessandro Bianco, Fabio Mogavero, Aniello Murano

Università degli Studi di Napoli "Federico II"
http://people.na.infn.it/~{alessandrobianco,mogavero,murano}

3rd Workshop of the ESF Networking Programme on Games for Design and Verification
Let S be a system and P a desired behavior (specification).

Two very important problems:

- **Model Checking**: Is S correct w.r.t. P?
- **Satisfiability**: Is P a correct specification?

To answer to these questions, formal methods are used.

- S can be modeled by a **labeled transition graph** \mathcal{K} (Kripke structure).
- P can be expressed as a **temporal logic formula** φ.

Then,

- **Model Checking**: $\mathcal{K} \models \varphi$?
- **Satisfiability**: Is there a \mathcal{K} such that $\mathcal{K} \models \varphi$?
A Kripke structure is a transition graph used to model system behaviours:

1. nodes represent system states;
2. edges represent system transitions;
3. labels represent state properties;
4. a path represents a system run.
System specifications

Temporal logic: description of the temporal ordering of events!

Two main families of temporal logics:

- **Linear-Time Temporal Logics (LTL)**
 - Each moment in time has a unique possible future.
 - LTL expresses path properties based on the paths state labels.
 - Useful for hardware specification.

- **Branching-Time Temporal Logics (CTL, CTL*, and \(\mu \)-CALCULUS)**
 - Each moment in time may split into various possible future.
 - CTL* expresses state properties based on the existence or universality of paths exiting from that state and satisfying LTL-like properties.
 - Useful for software specification.
Graded system specifications

\textbf{G\(\mu\)-CALCULUS} extends the \(\mu\)-CALCULUS with \textit{graded modalities}:

- "there exists at least \(n\) successors satisfying a given property";
- "all but at most \(n\) successors satisfy a given property".

\(\mu\)-CALCULUS: very expressive but too low-level (hard to understand).

LTL, CTL, and CTL*: less expressive but much more human-friendly.
Motivations

We ask whether we can extend CTL* with graded modalities so that:

- there is no extra cost in determining its decision problem;
- the resulting formal language is easy to use and understand.

Why graded modalities on paths?

- XML query languages.
- Cyclomatic complexity.
- Redundancy in a system.
- Counting error counterexamples.
Outline

1. Graded Computation Tree Logic
2. Satisfiability Resolution
3. Conclusion
Syntax of GCTL* and GCTL

GCTL* extends CTL* with new graded path quantifiers:
- "there exists at least n paths satisfying a given property";
- "all but at most n paths satisfy a given property".

Definition

GCTL* state (φ) and path (ψ) formulas are built inductively as follows:

1. \(\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid E^{\geq g} \psi \mid A^{< g} \psi, \)
2. \(\psi ::= \phi \mid \neg \psi \mid \psi \land \psi \mid \psi \lor \psi \mid X \psi \mid \tilde{X} \psi \mid \psi U \psi \mid \psi R \psi. \)

The simpler class of GCTL formulas is obtained by forcing each temporal operator, occurring in a formula, to be coupled with a path quantifier.
Counting paths

What does counting paths mean?

We can observe the paths starting from a node in the tree unwinding of a Kripke structure.

A property ensured by a common prefix may be satisfied on an infinite number of paths.

We can consider paths with a common prefix satisfying the formula as equivalent.

Example: $F q!$
Equivalence relation

We can define a generic equivalence on paths.

Two paths are equivalent if their common prefix satisfy the formula.

It may happen that the prefix satisfy a formula but a whole path may not.

We need to ask that no matter how the prefix is extended in the structure the path satisfy the formula.

Example: $G q$!
Semantics of GCTL*

Definition

Given a Ks $\mathcal{K} = \langle \text{AP}, W, R, L, w_0 \rangle$, a world $w \in W$, and a GCTL* path formula ψ, it holds that:

1. $\mathcal{K}, w \models E^{\geq g} \psi$ iff $|\text{Pth}(\mathcal{K}, w, \psi)/\equiv^\psi_{\mathcal{K}}| \geq g$;
2. $\mathcal{K}, w \models A^{< g} \psi$ iff $|\text{Pth}(\mathcal{K}, w, \neg \psi)/\equiv^{\neg \psi}_{\mathcal{K}}| < g$;

where $\text{Pth}(\mathcal{K}, w, \psi)$ is the set of paths of \mathcal{K} starting in w and satisfying ψ.

For $g = 1$, we may write $E\psi$ and $A\psi$ instead of $E^{\geq g} \psi$ and $A^{< g} \psi$.

Alessandro Bianco, Fabio Mogavero, Aniello Murano

Università degli Studi di Napoli "Federico II"
Outline

1. Graded Computation Tree Logic

2. Satisfiability Resolution

3. Conclusion
Previous approach

The previous known algorithm for the satisfiability of GCTL (LICS 2009) is $\text{EXP\textsc{time}}$ in the size of the formula, when the degree is coded in unary.

Procedure sketch:

1. GCTL formula φ ->
2. Partitioning Alternating Büchi Tree Automata \mathcal{A}_φ ->
3. Nondeterministic Büchi Tree Automata \mathcal{N}_φ ->
4. Resolution of the emptiness for \mathcal{N}_φ.
Problems for the binary case:

1. \mathcal{A}_φ is polynomial both in the length and degree of φ so, \mathcal{N}_φ is exponential in these values.

2. The emptiness for \mathcal{N}_φ is exponential in the width of the input trees that is polynomial in the degree of φ.

Solution:

1. we non-determinize only part of \mathcal{A}_φ that is polynomial in the length only;

2. we use a new encoding for the input trees of \mathcal{A}_φ.

The new algorithm is $\text{EXP} \text{TIME}$ in the size of the formula when the degree is coded in binary.
We encode the possible models of a GCTL formula in a graded binary tree.

1. We transform a Kripke structure in its equivalent tree model.
2. We add to the tree nodes degrees representing how many paths satisfy or do not satisfy a given path formula.
3. We delay the generation of the successor nodes so that at each step the degree of a node is split only in two parts.
4. We add to the tree nodes the informations on how the degrees are split.
The example tree model contains four paths. However, there are only three equivalence classes. For each node, we add the number of classes passing through it.

\[E^\geq 3 p U q \]
Graded tree

E ≥³ p U q

The example tree model contains four paths.
Graded tree

$$E^{\geq 3} p U q$$

1. The example tree model contains four paths.
2. However, there are only three equivalence classes.
The example tree model contains four paths.

However, there are only three equivalence classes.

For each node we add the number of classes passing through it.
Delayed generation tree

\[E^{\geq 3}p \cup q \]
Delayed generation tree

\[E^{\geq 3} p U q \]
Delayed generation tree

\(E^{\geq 3} p U q \)
Delayed generation tree

\[E^{\geq 3} p U q \]
Delayed generation tree

$E^\geq 3 p U q$

Alessandro Bianco, Fabio Mogavero, Aniello Murano

Università degli Studi di Napoli "Federico II"
Delayed generation tree

\[E^{\geq 3}p \mathbin{U} q \]
Delayed generation tree

\[E^{\geq 3} p U q \]

\[p(3) \]

\[p(q(1)) \]

\[p(2) \]

\[q \]

\[q \]

\[p \]

\[q(1) \]

\[q(1) \]

\[p \]

\[p(3,2,1) \]

\[p, q(1) \]

\[(2,0,2) \]

\[p(2,1,1) \]

\[q(1) \]

\[q \]

\[q \]

\[q \]

\[p \]

\[q(1) \]

\[p \]

\[\bot \]
Automata for satisfiability

The automaton that accepts all the binary models of a formula consists in two parts:

- A coherence satellite checks that the degrees are coherently handed down from a node to its successors.
- An alternating formula automaton checks that the path formulas are satisfied on the paths with non-zero labeling.
- The degree labels are not in the input tree but they are supplied by the coherence satellite (the formula automaton just needs to read the satellite states).
- The automaton with satellite accepts in input non-graded binary trees.
Formula automaton run

- $p(3, 2, 1)$
 - $\bot (2, 0, 2)$
 - $\bot (2, 1, 1)$
 - $\bot (1, 0, 1)$
 - $\bot (1, 0, 1)$
 - $q(1)$
 - $p(2, 1, 1)$
 - $\bot (1, 0, 1)$
 - $q(1)$
 - $p(1, 0, 1)$
 - $p(q(1))$
 - $\bot (2, 0, 2)$
 - $p, q(1)$
 - $\bot (2, 0, 2)$
 - $\bot (2, 0, 2)$
 - $q(1)$
 - $\bot (2, 0, 2)$

- $p/E^3 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $q / E^1 pUq$
 - $q / E^1 pUq$
 - $p / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $\bot / EpUq$
 - $q / E^1 pUq$
The coherence satellite is a non-deterministic automaton polynomial in the size of the formula but exponential in the degree coded in binary.

The formula automaton is an alternating automaton polynomial in the length of the formula only.

We need to non-determinize only the formula automaton through the Miyano-Hayashi reduction.

The resulting non-deterministic automaton is exponential in the size of the formula, i.e., both in the length and in the degree coded in binary.
Computational complexity

<table>
<thead>
<tr>
<th>Logic</th>
<th>Computational Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>EXP\textsc{TIME}-COMPLETE</td>
</tr>
<tr>
<td>GCTL</td>
<td>EXP\textsc{TIME}-COMPLETE</td>
</tr>
<tr>
<td>μ-CALCULUS</td>
<td>EXP\textsc{TIME}-COMPLETE</td>
</tr>
<tr>
<td>$G\mu$-CALCULUSab</td>
<td>EXP\textsc{TIME}-COMPLETE</td>
</tr>
</tbody>
</table>

\textbf{Table:} Computational complexity of Satisfiability.

$G\mu$-\textsc{CALCULUS} subsumes GCTL.

However, GCTL is exponential more succinct than $G\mu$-\textsc{CALCULUS}.

a O. Kupferman, U. Sattler, and M. Vardi. The Complexity of the $G\mu$-\textsc{CALCULUS}, CADE'02.

b P. Bonatti, C. Lutz, A. Murano, and M. Vardi. The Complexity of Enriched μ-Calculi, ICALP'06 / LMCS'08.
Outline

1. Graded Computation Tree Logic
2. Satisfiability Resolution
3. Conclusion
In this work...

- we showed how it is possible to count the number of paths satisfying a given formula;
- we introduced a GCTL logic that allow us to use graded quantifiers as properties on states;
- we describe an encoding technique useful to represents and check the distributions of paths with desired properties in a model;
- we solved the GCTL satisfiability problem in time exponential in the size of the formula when the degree is coded in binary.
Thank you very much for your attention!