Reasoning about Strategies

Fabio Mogavero1 Aniello Murano1 Moshe Y. Vardi2

1Universitá degli Studi di Napoli "Federico II"
http://people.na.infn.it/~\{mogavero,murano\}

2Rice University
http://www.cs.rice.edu/~vardi/

30th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
Chennai, India, December 15-18, 2010
Aim of our work

Idea

We are looking for a logic in which we can talk about the strategic behavior of agents in multi-player games.

Application

It can be used as a specification language for the formal verification and synthesis of modular and interactive systems.
From monolithic to multi-agent systems

Historical development:

- **Model checking**: analyzes systems monolithically (system components plus environment) [Clarke & Emerson, Queille & Sifakis, ’81].

- **Module checking**: separates out the environment from the system components, but still views the system monolithically [Kupferman & Vardi, ’96].

- **Alternating temporal reasoning**: multi-agent systems (components individually considered), playing strategically [Alur et al., ’02].

- **Strategic logic reasoning**: two-player turn-based games verified by considering strategies as first order objects [Chatterjee et al., ’07].
Strategic reasoning

Example

Reactive synthesis: Synthesize an interactive system that satisfies a given specification, independently of the possible sequences of inputs.

Example

Nash equilibrium: Verify that the players of a game have optimal strategies (each player is willing to follow its optimal strategy, if also the other do that).
A concurrent game structure is a tuple $\mathcal{G} = \langle \text{AP}, \text{Ag}, \text{Ac}, \text{St}, \lambda, \tau, s_0 \rangle$ where:

1. AP: set of atomic propositions;
2. Ag: set of agents;
3. Ac: set of actions;
4. St: set of states;
5. $s_0 \in \text{St}$: designated initial state;
6. $\lambda : \text{St} \rightarrow 2^{\text{AP}}$: labeling function;
7. $\tau : \text{St} \times \text{Ac}^\text{Ag} \rightarrow \text{St}$: transition function mapping a state and a decision (i.e., a function from Ag to Ac) to a new state.
Concurrent game model (II)

\(\text{St} \) is not the global state space of the system, but the state space of the environment (the game) in which the agents operate.

\(\text{Ac} \) consists of local actions of all the agents.

\(\text{Ac}^{\text{Ag}} \) represents the set of choices of an action for each agent.
Alternating-Time Temporal Logics [Alur et al., ’02]

$\langle A \rangle \psi$: There is a strategy for the agents in $A \subseteq Ag$ enforcing the property ψ, independently of what the agents not in A can do.

Example

$\langle \{\alpha, \beta\} \rangle G \neg \text{fail}$: “Agents α and β cooperate to ensure that a system (having possibly more than two processes (agents)) never enters a fail state.”

Despite its powerful expressiveness, ATL* suffers from the strong limitation that strategies are treated only implicitly.

The quantifier alternation is fixed to 1!
For instance, in the previous example, you cannot say that α has an uniform strategy w.r.t. the other agents, while β can choose its in dependence of their.
Strategy Logic [Chatterjee et al., ’07]

Example

\[\exists x_1, x_2. \forall y. \psi(x_1, y) \land \neg \psi(x_2, y) \]: There are two strategies for the first player, \(x_1 \) and \(x_2 \), such that \(x_1 \) enforces \(\psi \) while \(x_2 \) enforces \(\neg \psi \), independently of the strategy \(y \) of the second player.

- The logic is investigated only under the weak framework of two-players and turn-based games.
- The model checking procedure is non-elementary, without matching lower-bound.
- The satisfiability problem is not studied at all.
Our contribution

We introduce a new Strategy Logic (SL), as a more general framework (both in its syntax and semantics), for explicit reasoning about strategies in *multi-player concurrent games*.

We investigate and solve both the problems of

- **model-checking** (decidable, 2ExpTime-Complete),
- **satisfiability** (undecidable, Σ^1_1-Hard).

Fabio Mogavero, Aniello Murano, Moshe Y. Vardi

Università degli Studi di Napoli "Federico II", Rice University
Outline

1 Reasoning about Strategies
 - Syntax and Informal Semantics
 - Examples of Specifications

2 Decision problems
 - Model Checking
 - Satisfiability

3 Conclusion
Underlying temporal logic

LTL: Linear-Time Temporal Logic [Pnueli, ’79]

\[\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi \mid \varphi R \varphi. \]

Example

- **X \varphi**: \(\varphi \) holds in the next state;
- **F \varphi**: \(\varphi \) holds eventually;
- **G \varphi**: \(\varphi \) holds forever;
- **\(\varphi_1 U \varphi_2 \)**: \(\varphi_1 \) holds until \(\varphi_2 \) holds;
- **\(\varphi_1 R \varphi_2 \)**: \(\varphi_2 \) holds forever or until \(\varphi_1 \) holds.
Syntax of SL

Definition

SL formulas are built inductively in the following way, where $p \in AP$ is an atomic proposition, $x \in \text{Var}$ a variable, and $a \in \text{Ag}$ an agent.

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid X \phi \mid \phi U \phi \mid \phi R \phi \mid \langle\langle x \rangle\rangle \phi \mid [x] \phi \mid (a, x) \phi.$$

SL syntactically extends LTL by means of strategy quantifiers, the existential $\langle\langle x \rangle\rangle$ and the universal $[x]$, and agent binding (a, x).
Basic definitions

\[\text{Trk}(G) \subseteq \text{St}^+ \] denotes the set of all \textit{tracks}, i.e., finite paths, of the CGS \(G \).

A \textit{strategy} for \(G \) is a partial function \(f : \text{Trk}(G) \rightarrow \text{Ac} \) mapping each track in its domain to an action.

When all the agents have associated strategies, they individuate a unique path in the underlying CGS \(G \), called the \textit{play} of the game.
Informal meaning of $\langle x \rangle \varphi$, $[x] \varphi$, and $(a, x) \varphi$

Strategy quantification
- $\langle x \rangle \varphi$: “there exists a strategy x for which φ is true”;
- $[x] \varphi$: “for all strategies x, it holds that φ is true”.

Agent binding
- $(a, x) \varphi$: “φ holds, when the agent a uses the strategy x.”
Example: Failure is not an option

No failure property

“In a system S built on three processes, α, β, and γ, the first two have to cooperate in order to ensure that the system itself never enters a failure state”.

Three different possible formalization in SL.

- $\langle \langle x \rangle \rangle \langle \langle y \rangle \rangle \langle [z] (\alpha, x)(\beta, y)(\gamma, z)(G \neg fail)\rangle: \alpha$ and β have two strategies, x and y, respectively, that, independently of what γ decides, ensure that a failure state is never reached.

- $\langle \langle x \rangle \rangle \langle [z] \rangle \langle \langle y \rangle \rangle (\alpha, x)(\beta, y)(\gamma, z)(G \neg fail)\rangle: \beta$ can chose his strategy y in dependence of that one chosen by γ.

- $\langle \langle x \rangle \rangle \langle [z] \rangle (\alpha, x)(\beta, x)(\gamma, z)(G \neg fail)\rangle: \alpha$ and β have a common strategy x to ensure the required property.
Multi-player Nash equilibrium

Nash equilibrium

Let G be a Cgs with the n agents $\alpha_1, \ldots, \alpha_n$, each one having an its own LTL goal ψ_1, \ldots, ψ_n.

We want to know if G admits a Nash equilibrium, i.e., if there is for each agent α_i a “best” strategy x_i w.r.t. the goal ψ_i, once all other strategies are fixed.

$$\phi_{NE} \equiv \langle \langle x_1 \rangle \rangle \cdots \langle \langle x_n \rangle \rangle (\alpha_1, x_1) \cdots (\alpha_n, x_n) (\land_{i=1}^n (\langle \langle y \rangle \rangle (\alpha_i, y) \psi_i) \rightarrow \psi_i)$$

Intuitively, if $G \models \phi_{NE}$ then x_1, \ldots, x_n form a Nash equilibrium, since, when an agent α_i has a strategy y that allows the satisfaction of ψ_i, he can use x_i instead of y, assuming that the remaining agents $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_n$ use $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$.

Fabio Mogavero, Aniello Murano, Moshe Y. Vardi

Università degli Studi di Napoli "Federico II", Rice University
Outline

1. Reasoning about Strategies
 - Syntax and Informal Semantics
 - Examples of Specifications

2. Decision problems
 - Model Checking
 - Satisfiability

3. Conclusion
Model checking via tree automata

General procedure

2. Given a specification φ, construct a tree automaton A_φ recognizing all the tree models of φ itself.

Challenge here: The automaton A_φ has to deal with the strategy quantifications of the formula φ.
Decidability of model checking

Key Idea (I): Every strategy quantification can be reduced to an action quantification, for each node of the tree-unwinding of the model.

Key Idea (II): Every action quantification can be handled locally on each node of the tree, by using the transition function of a tree automaton.

Thus, we reduce the model-checking problem to the emptiness of an exponential (in the size of the formula) parity tree automaton. Hence, we obtain a $2\text{EXP\textsc{Time}}$ model-checking procedure for SL.
Recurrent domino problem

Definition

An *recurrent domino system* is a tuple $\mathcal{D} = \langle D, H, V, t^* \rangle$ consisting of a finite non-empty set D of *domino types*, two *horizontal* and *vertical matching relations* $H, V \subseteq D \times D$, and a *distinguished* tile type $t^* \in D$.

The recurrent domino problem asks for an *admissible tiling* of $\mathbb{N} \times \mathbb{N}$, i.e., a function $\partial : \mathbb{N} \times \mathbb{N} \rightarrow D$ that labels the plane consistently with H and V in such a way that the tile type t^* is repeated infinitely often on the first row of the grid.

The solution of the problem is known to be *undecidable* [Harel, ’84]. In particular, it is Σ_1^1-HARD.
An ordering on strategies (I)

Strategy ordering

Let G be a CGS with two agents, α and β, and an atomic proposition p. We want to force the existence in G of a strict partial order over strategies for α that has no upper bound.

$$x_1 < x_2 \triangleq \langle \langle y \rangle \rangle (\beta, y)((\alpha, x_1)(X p) \land (\alpha, x_2)(X \neg p)).$$

Note that $<$ is strict by definition.
An ordering on strategies (II)

Ordering sentence

\[\varphi^{ord} \triangleq \varphi^{unb} \land \varphi^{trn}: \]

1. \(\varphi^{unb} \triangleq [x_1] \llbracket x_2 \rrbracket x_1 < x_2; \)
2. \(\varphi^{trn} \triangleq [x_1][x_2][x_3] (x_1 < x_2 \land x_2 < x_3) \rightarrow x_1 < x_3. \)

Intuitively, \(< \) has no upper bound by Item 1 and is transitive by Item 2. Hence, it is a strict partial order without upper bound.

Note that \(G \) requires an infinite number of actions in order to satisfy \(\varphi^{ord} \). Moreover, we proved that \(G \) cannot be turn-based.
Undecidability of satisfiability

Key Idea (I): By using the ordering sentence, we force the existence of two infinite chains of strategies for two players α and β.

Key Idea (II): The two chains represent two perpendicular sides of the grid $\mathbb{N} \times \mathbb{N}$, whose points are in bijection with the pairs of strategies for α and β.

We use the previous ideas to construct a reduction of the recurrent domino problem to the satisfiability of a particular SL formula. Hence, we obtain that the satisfiability problem is Σ_1^1-HARD.
Outline

1 Reasoning about Strategies
 - Syntax and Informal Semantics
 - Examples of Specifications

2 Decision problems
 - Model Checking
 - Satisfiability

3 Conclusion
In this work...

- we introduced SL, a new logic formalism for the temporal description of multi-player concurrent games, in which strategies are treated as first order objects;
- we show that the model-checking is $2\text{EXP} \text{TIME}-\text{COMPLETE}$, improving the known non-elementary upper bound proved by K. Chatterjee and T.A. Henzinger and N. Piterman for their simpler logic;
- finally, we show that the satisfiability is highly undecidable, i.e., Σ^1_1-HARD, so it is even not computably enumerable.
Thank you very much for your attention!
May the strategy be with you!