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Abstract. Half positionality is the property of a language of infinite words to
admit positional winning strategies, when interpreted as the goal of a two-player
game on a graph. Such problem applies to the automatic synthesis of controllers,
where positional strategies represent efficient controllers. As our main result, we
describe a novel sufficient condition for half positionality, more general than what
was previously known. Moreover, we compare our proposed condition with sev-
eral others, proposed in the recent literature, outlining an intricate network of
relationships, where only few combinations are sufficient for half positionality.

1 Introduction

Games are widely used in computer science as models to describe multi-agent systems,
or the interaction between a system and its environment [KVW01, McN93, Tho95,
Zie98]. Usually, the system is a component that is under the control of its designer and
the environment represents all the components the designer has no direct control of. In
this context, a game allows the designer to easily check whether the system can force
some desired behavior (or avoid an undesired one), independently of the choices of the
other components. Further, game algorithms may automatically synthesize a design that
obtains the desired behavior.

We consider games played by two players on a finite graph, called arena. The arena
models the interaction between the entities involved: a node represents a state of the
interaction, and an edge represents progress in the interaction. We consider turn-based
games, i.e. games where each node is associated with only one player, who is responsi-
ble for choosing the next node. A sequence of edges in the graph represents a run of the
system. Player 0 wants to force the system to follow an infinite run with a desired prop-
erty, expressed as a language of infinite words called goal. The objective of player 1 is
the opposite. In this context, a strategy for a player is a predetermined decision that the
player makes on all possible finite paths ending with a node associated to that player. A
strategy is winning for a player if it allows him to force a desired path no matter what
strategy his opponent uses. A key property of strategies is the amount of memory that
they require, in order to choose their next move. The simplest strategies do not need to
remember the past history of the game, i.e., their choices only depend on the current
state in the game. Such strategies are called positional.

We are interested in determining the existence of a winning strategy for one of the
players, and possibly compute an effective representation of such a strategy. To this aim,
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suitable techniques have been developed when the desired behavior of a player is spec-
ified in particular forms (see [KVW01] for temporal logic specifications, and [EJ91,
McN93, Mos91] for parity conditions). In synthesis problems, only positional strate-
gies may be suitable to concrete implementation, due to space constraints. In fact, in
principle even a positional strategy, which is a function from states to moves, needs
an amount of storage that is proportional to the size of the state-space of the system.
Symbolic representations can mitigate such issues [Cac02]. For this reason, it is useful
to know when a given goal guarantees that if player 0 (respectively, player 1) has a
winning strategy then he has a positional one. This property is called half positionality
(in the following, HP) for player 0 (resp., player 1). If a goal is HP for both players,
the goal is called full positional (FP). Notice that HP is more important than FP in the
synthesis applications we are referring to. In these applications, player 0 represents the
controller to be synthesized and player 1 the environment. Hence, we are only interested
in obtaining simple winning strategies for one of the two players, namely for player 0.

Full positionality has been studied and characterized: in [EJ91, McN93, Mos91], it
was proved that the parity winning conditions are full positional and in [GZ05] Zielonka
and Gimbert defined a complete characterization for full positional determined goals on
finite arenas. In that paper, it is proven that a goal is FP if and only if both the goal and
its complement satisfy two properties called monotonicity and selectivity. On the other
hand, a goal (but not its complement) being monotone and selective is not sufficient
for HP. Moreover, HP has been specifically investigated by Kopczyński in [Kop07,
Kop06]. There, the author defines sufficient conditions for a goal to be HP on all finite
arenas. However, no characterization of half positional goals has been found so far.
Positionality of games with infinitely many moves has been studied in [CN06, Gra04].

In his work, Kopczyński proves that if a goal is concave and prefix-independent
then it is HP. In this paper, we investigate half positionality on finite arenas and we
provide a novel sufficient condition for a goal to be HP on all finite arenas. We prove
that if a goal is strongly monotone and strongly concave, then it is HP. As the names
suggest, strong monotonicity is derived by the notion of monotonicity in [GZ05] and
strong concavity refines the notion of concavity defined in [Kop06]. We prove that our
condition constitutes an improvement over that defined in [Kop06], because it allows
to classify as HP a broader set of goals. Several examples show that our condition is
somewhat robust, in the sense that it is not trivial to further strengthen the result.

Overview. The rest of the paper is organized as follows. In Section 2, we introduce some
preliminary notation. In Section 3, we introduce and define the new properties of goals
sufficient to ensure half positionality. We prove that such properties describe a wider
set of goals than the properties in [Kop06] and we show that some weaker conditions
are not sufficient. In Section 4, we prove that our conditions are not necessary to half-
positionality. In Section 5, we analyze the conditions of [GZ05], relating them to half
positionality. We show that natural stronger forms of such conditions are not sufficient,
and we conclude by defining a characterization for half-positionality on game graph
whose nodes belong all to one player only. Finally, we provide some conclusions is
Section 6.
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2 Preliminaries

Let X be a set and i be a positive integer. By X i we denote the Cartesian product of
X with itself i times and by X∗ (resp., Xω) the set of finite (resp., infinite) sequences
of elements of X . The set X∗ also contains the empty word ε. A finite language (resp.
infinite language) on the alphabet X is a subset of X∗ (resp. Xω). A finite state automa-
ton is a tuple (X ,Q,δ,q0,F) where X is an alphabet, Q a set of states, q0 ∈ Q an initial
state, F ⊆ Q a set of final states and δ : Q×X → 2Q a transition function. A run of
the automaton on a sequence x1 . . .xk ∈ X∗, is a sequence q0 . . .qk ∈ Q∗ such that for
each i ∈ {1, . . . ,k} we have qi ∈ δ(qi−1,xi). A word x ∈ X∗ is said accepted by the au-
tomaton if there exists a run q0, . . . ,qk on x ending in a final state qk ∈ F . A language is
said regular iff there exists a finite state automaton that accepts all and only the words
belonging to it. Moreover, by N we denote the set of non-negative integers.

For a non-negative integer k, let [k] = {0,1, . . . ,k}. A word on the alphabet [k] is a
finite or infinite sequence of elements of [k], a language over the alphabet [k] is a set
of words over [k]. For each element i ∈ [k], we often use i to denote the language {i},
when the meaning is clear from the context.

Arenas. A k-colored arena is a tuple A = (V0,V1,vini,E), where V0 and V1 are a partition
of a finite set V of nodes, vini ∈ V is the initial node, and E ⊆ V × [k]×V is a set of
colored edges such that for each node v ∈V there is at least one edge exiting from v. A
colored edge e = (u,a,v) ∈ E represents a connection colored with a from the node u,
named source of e, to the node v, named destination of e. In the following, we simply
call a k-colored arena an arena, when k is clear from the context. For a node v ∈V , we
call vE = {(v,a,w) ∈ E} and Ev = {(w,a,v) ∈ E} the sets of edges exiting and entering
v, respectively.

For a color a∈ [k], we denote by E(a) = {(v,a,w)∈E} the set of edges colored with
a. A finite path ρ is a finite sequence of edges {(vi,ai,vi+1)}i∈{0,...,n−1}, and its length |ρ|
is the number of edges it contains. We use ρ(i) to indicate the i-th edge of ρ. Sometimes,
we write the path ρ as v0v1 . . .vn, when the colors are not important. An infinite path
is defined analogously, i.e., it is an infinite sequence of edges {(vi,ai,vi+1)}i∈N. For a
path (finite or infinite) ρ and an integer i, we denote by ρ≤i the prefix of ρ containing i
edges. The color sequence of a finite (resp. infinite) path ρ = {(vi,ci,vi+1)}i∈{0,...,n−1}
(resp. ρ = {(vi,ci,vi+1)}i∈N) is the sequence Col(ρ) = {ci}i∈{0,...,n−1} (resp. Col(ρ) =
{ci}i∈N) of the colors of the edges of ρ. For two color sequences x,y ∈ [k]ω, the shuffle
of x and y, denoted by x⊗ y is the language of all the words z1z2z3 . . . ∈ [k]ω, such
that z1z3 . . .z2h+1 . . . = x and z2z4 . . .z2h . . . = y, where zi ∈ [k]∗ for all i ∈ N. For two
languages M,N ⊆ [k]ω, the shuffle of M and N is the set M⊗N = ∪n∈N,m∈Mm⊗n.

Games. A k-colored game is a pair G = (A,W ), where A = (V0,V1,vini,E) is a k-colored
arena and W ⊆ [k]ω is a set of color sequences called goal. By W we denote the set
[k]ω \W . Informally, we assume that the game is played by two players, referred to as
player 0 and player 1. The players construct a path starting at vini on the arena A; such
a path is called play. Once the partial play reaches a node v ∈ V0, player 0 chooses an
edge exiting from v and extends the play with this edge; once the partial play reaches a
node v ∈ V1, player 1 makes a similar choice. Player 0’s aim is to make the play have
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color sequence in W , while player 1’s aim is to make the play have color sequence in W .
We now define some notation in order to formalize the previous intuitive description.
For h ∈ {0,1}, let Eh = {(v,c,w) ∈ E | w ∈ Vh} be the set of edges ending into nodes
of player h. Moreover, let ε be the empty word. A strategy for player h is a function
σh : ε∪ (E∗Eh)→ E such that, if σh(e0 . . .en) = en+1, then the destination of en is the
source of en+1, and if σh(ε) = e, then the source of e is vini. Intuitively, σh fixes the
choices of player h for the entire game, based on the previous choices of both players.
The value σh(ε) is used to choose the first edge in the game. A strategy σh is positional
iff its choices depend only on the last node of the partial play, i.e., for all partial plays
ρ and ρ′ with the same last node, it holds that σh(ρ) = σh(ρ′). A play {ei}i∈N ∈ Eω is
consistent with a strategy σh iff (i) if vini ∈Vh then e0 = σh(ε), and (ii) for all i ∈ N, if
ei ∈ Eh then ei+1 = σh(e0 . . .ei). An infinite play ρ is winning for player 0 (resp. player
1) iff Col(ρ) ∈W (resp. Col(ρ) 6∈W ). Note that, given two strategies, σ for player 0
and τ for player 1, there exists only one play consistent with both of them. This is due
to the fact that the two strategies univocally determine the next edge at every step of
the play. We call such a play PG(σ,τ). A strategy for player h is winning iff all plays
consistent with that strategy are winning for player h. A game is determined iff one of
the two players has a winning strategy. A goal is determined iff all games G = (A,W )
are determined.

Concavity and Prefix Independence. A goal is said prefix independent if the adding
or removing of a finite prefix on an infinite color sequence does not change the win-
ning value of the sequence itself. Formally, a goal W ⊆ [k]ω is prefix independent iff
for all color sequences x ∈ [k]ω, and all finite words z ∈ [k]∗, x ∈W iff zx ∈W . Follow-
ing [Kop06], a goal is concave if switching infinitely often between two infinite color
sequences, does not yield a better color sequence for player 0. Formally, a goal W is
concave iff, for all words x,y ∈ [k]ω and z ∈ x⊗ y, it holds that if z ∈W then x ∈W or
y ∈W . A goal W is half positional on an arena A iff, for all games G = (A,W ), if player
0 has a winning strategy then he has a positional winning strategy. A goal W is half
positional iff it is half positional on all arenas A. As proved by Kopczyński, concave
and prefix independence properties are sufficient conditions for half positionality.

Theorem 1 ([Kop06]). All concave and prefix-independent goals are determined and
half-positional.

In the following, for a goal W and a pair of sets M,N ∈ [k]ω we use the notation M≤W N
to mean that if M contains a winning word then N contains a winning word too, and the
notation M <W N to mean that M contains only losing words and N contains at least a
winning word. For ease of reading, when the goal W is clear from the contest, we write
M < N and M ≤ N, respectively, for M <W N and M ≤W N. With the following two
lemmas, we reformulate the definition of concavity and prefix independence in terms
of languages, rather than of single words.

Lemma 1. A goal W ⊆ [k]ω is prefix-independent iff for all color sequences x ∈ [k]∗

and sets of color sequences M ⊆ [k]ω we have that xM ≤M and M ≤ xM.

Proof. Suppose that W is prefix independent. If M contains a winning word m, then xM
contains the winning word xm, and we have both xM ≤M and M ≤ xM. If M contains
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only losing words m, then xM contains only losing words xm and we have both xM ≤M
and M ≤ xM.

Suppose now that, for all languages M ⊆ [k]ω, we have xM ≤ M and M ≤ xM.
Moreover, suppose by contradiction that W 6= xW . Then, there exists a word m such
that xm 6∈W . Hence, for the language M = {m} we do not have M ≤ xM. ut

Lemma 2. A goal W ⊆ [k]ω is concave iff for all languages M,N ⊆ [k]ω we have that
M⊗N ≤M∪N.

Proof. Suppose that W is concave. For all M,N ⊆W , we have that M⊗N ⊆W . So, for
all languages M,N ∈ [k]ω, if M or N contains a winning word in W , we have in both
cases M⊗N ≤M∪N; conversely, if M and N contain only losing words, by hypothesis,
so does M⊗N. Hence, we have that M⊗N ≤M∪N.

Suppose now that for all languages M,N ⊆ [k]ω we have M⊗N ≤M∪N. Then, if
M and N contain only losing words, M⊗N must contain only losing words too. Thus,
for all M,N ∈W we have that M⊗N ⊆W . ut

3 Novel Properties of Goals
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Fig. 1. Three game arenas.

In this section, we present two properties of goals: strong monotonicity and strong
concavity. Their aim is to refine the properties of prefix-independence and concavity in
such a way they still imply half positionality for player 0. The property of monotonicity
was first defined in [GZ05]. It states that two color sequences with a common prefix
cannot exchange their winning value by switching to another prefix.

Definition 1. A goal W ⊆ [k]ω is monotone iff for all words x ∈ [k]∗ and all regular
languages M,N ⊆ [k]ω it holds that xM < xN implies that for all y ∈ [k]∗ it is yM ≤ yN.

Here, we define a stronger version of monotonicity, it asks that the above property
should hold even on non-regular languages.

Definition 2. A goal W ⊆ [k]ω is strongly monotone if, for all words x ∈ [k]∗, m,n ∈
[k]ω, such that xm 6∈W and xn ∈W, for all y ∈ [k]∗ it holds that either ym 6∈W or
yn ∈W.
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In the following we make use of an equivalent definition of strong monotonicity that
operates on languages.

Lemma 3. A goal W ⊆ [k]ω is strongly monotone iff, for all words x ∈ [k]∗ and lan-
guages M,N ⊆ [k]ω, it holds that xM < xN implies that for all y ∈ [k]∗ it is yM ≤ yN.

Strong monotonicity represents a weakening of the property of prefix independence
that requires, instead, that the winning nature of a word does not change by changing a
finite prefix. Indeed, the following lemma holds.

Lemma 4. All prefix-independent goals are strongly monotone. Moreover, there is a
goal which is strongly monotone, but not prefix-independent.

Proof. For the first part, we have by hypothesis that, for all x ∈ [k]∗, and M ⊆ [k]ω, it
holds that M ≤ xM ≤M. Now, take two languages M,N ⊆ [k]ω, and suppose that there
exists an x ∈ [k]∗ such that xM < xN, then for all y ∈ [k]∗ we have yM ≤ M ≤ xM ≤
xN ≤ N ≤ yN.

For the second part, let k = 1, a strongly monotone and prefix-dependent goal is
given by the language of all words containing at least one 0, i.e., W = [k]∗0[k]ω. It is
easy to see that the goal is not prefix-independent, because the word 1ω is losing while
the word 01ω is winning. We show that the goal is strongly monotone. Consider two
languages M,N ⊆ [k]∗, and suppose that there exists an x ∈ [k]∗ such that xM < xN,
then xN contains a winning word and xM contains only losing words. Observe first that
x cannot contain 0, or else all words in xM would be winning. So x ∈ 1∗, there exists
a word in N that contains 0, and all words in M contain only 1’s. So, for each y ∈ [k]∗,
there is always a word in yN containing 0. Since yN contains a winning word, we have
yM ≤ yN. ut

We investigate the usefulness of strong monotonicity. First, we show that strong
monotonicity cannot replace prefix-independence in the hypotheses of Theorem 1.

Lemma 5. There is a strongly monotone and concave goal which is not half-positional.

Proof. For k = 1, the strongly monotone and concave goal is W = [k]∗01ω. We prove
first that the goal is strongly monotone and concave. A word is losing if and only if it
is either 1ω or it does not have 1ω as a suffix. Let x ∈ [k]∗, n,m ∈ [k]ω with xn,xm 6∈W .
There are two situations to discuss. First, assume that x does not contain 0. Then, n and
m may be both 1ω in which case x(m⊗n) = 1ω or at least one between n and m contains
0 infinitely often, thus the shuffle of n and m contains only words that pick colors from
both the sequences infinitely often and thus only words that contain 0 infinitely often.
So, x(m⊗n) contains losing word even in this case. Instead, assume that x contains 0.
Then, n and m contain 0 infinitely often and the same reasoning above applies. So the
goal is concave. Let x ∈ [k]∗, n,m∈ [k]ω such that xm 6∈W and xn∈W . We prove strong
monotonicity by showing that for all y ∈ [k]∗ it holds that ym 6∈W or yn ∈W . We again
distinguish two cases. First, assume that x does not contain a 0. Then, n contains 0 and
a suffix 1ω thus for every y ∈ [k]∗, we have yn ∈W since it contains 0 and a suffix 1ω.
Instead, assume that x contains a 0. Then, m contains 0 infinitely often, thus for every
y ∈ [k]∗ the word ym 6∈W since it contains 0 infinitely often. The above goal is not
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half-positional in the following arena ({v}, /0,v,{(v,0,v),(v,1,v)}) (Fig. 1(a)), in such
a game graph player 0 wins by choosing at least once the edge with color 0 and then
always the edge with color 1. ut

Observe that, in the previous counterexample, the key element that does not allow
half positionality is the fact that player 0 prefers switching between two different behav-
iors finitely often and then progressing indefinitely along one of them. However, con-
cavity just requires that player 0 prefers following a fixed behavior rather than switch-
ing between two different ones infinitely often. Thus, we introduce a modification to the
property of concavity, requiring not only that alternating infinitely often between two
losing words yields a losing word, but also that alternating finitely often between two
losing words and then progressing along one of them yields a losing word.

Definition 3. For two color sequences x,y ∈ [k]ω, the strong shuffle of x and y, denoted
by x⊗s y is the language containing

1. the set x⊗ y;
2. the words z1z2 . . .zlz′ ∈ [k]ω, for odd l, zi ∈ [k]∗ and z′ ∈ [k]ω, such that it holds

x = z1z3 . . .zlz′ and y = z2z4 . . .zl−1y′, for some y′ ∈ [k]ω;
3. the words z1z2 . . .zlz′ ∈ [k]ω, for even l, zi ∈ [k]∗ and z′ ∈ [k]ω, such that it holds

x = z1z3 . . .zl−1x′ and y = z2z4 . . .zlz′, for some x′ ∈ [k]ω.

For two languages M,N ⊆ [k]ω, the strong shuffle of M and N is the set M⊗s N =
∪n∈N,m∈M(m⊗s n).

Definition 4. A goal W ⊆ [k]ω is strongly concave iff, for all words x∈ [k]∗, n,m∈ [k]ω,
and z ∈ x(m⊗s n), it holds that if z ∈W then either xn ∈W or xm ∈W.

It is immediate to see that a strongly concave goal is concave too. In the following, we
make use of an equivalent definition of strong concavity that operates on languages.

Lemma 6. A goal W ⊆ [k]ω is strongly concave iff, for all words x∈ [k]∗ and languages
M,N ⊆ [k]ω, it holds that x(M⊗s N)≤ xM∪ xN.

Even the property of strong concavity is not sufficient to ensure half positionality.

Lemma 7. There is a strongly concave goal which is not half-positional.

Proof. For k = 1 the strongly concave goal is W = 0ω ∪ 1ω. Two losing words n and
m contain at least an occurrence of the color 1 and an occurrence of the color 0,
thus every word in their strong shuffle will contain at least an occurrence of color
1 and an occurrence of color 0 and it will be losing. So the strong concavity of the
goal is proved. The above goal is not half-positional in the following 2-colored arena
({u},{v},v,{(v,0,u),(v,1,u),(u,0,u),(u,1,u)}), showed in Figure 1(b). In this arena
player 0 wins the game by choosing forever the edge (u,0,u) or the edge (u,1,u) de-
pending on what color was chosen by player 1 to reach u from v. ut
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In the previous counterexample, by choosing a different prefix, player 1 can ex-
change the winning nature of the following choices of player 0. That is why strong
monotonicity is essential since it somehow allows player 0 to operate while forgetting
the past decisions taken by player 1.

We argue now that the two introduced properties of strong monotonicity and strong
concavity are strictly less restrictive than the properties of prefix independence and
concavity.

Lemma 8. Concave and prefix-independent goals are strongly monotone and strongly
concave.

Proof. By Lemma 4 we already have that a prefix-independent goal is strongly mono-
tone. It remains to show that a concave and prefix-independent goal is strongly concave.

For a language M⊆ [k]ω, let suff (M) and pref (M) be the sets of suffixes and prefixes
of words in M, respectively. By concavity, for all M,N ⊆ [k]ω we have M⊗N ≤M∪N
and by prefix independence we have for all M ∈ [k]ω and for all x ∈ [k]∗ M ≤ xM ≤M.
Take any word x ∈ [k]∗, and any two languages M,N ⊆ [k]ω. Then we have x(M⊗s
N) = x(M⊗N)∪ x · pref (M⊗N) · suff (N)∪ x · pref (M⊗N) · suff (M). First, by prefix
independence and then by concavity we have x(M⊗N)≤M⊗N ≤M∪N ≤ x(M∪N) =
xM∪xN. Then, x ·pref (M⊗N) ·suff (T )≤ suff (T )≤ xT ≤ xM∪xN, where T ∈ {M,N}.
So, we have x(M⊗s N)≤ xM∪ xN. ut

Lemma 9. There exists a strongly monotone and strongly concave goal which is not
prefix independent.

Proof. Let k = 1, the goal is given by the set of words that either start with 1, or start
with 0 and contain infinitely many 0’s, i.e., W = 0(1∗0)ω ∪ 1[k]∗. It is easy to see that
the goal is not prefix-independent: indeed, for M = 1ω we have that 0M ≤M, but not
M ≤ 0M since M contains only winning words and 0M only losing ones.

Next, we prove that the goal is strongly monotone. Consider M,N ⊆ [k]∗ and x∈ [k]∗

and suppose that xM < xN, so xN contains a winning word and xM contains only losing
ones. Observe that x does not start with 1, otherwise all words in xM would be winning.
So, there are two situations to discuss: x = ε or x starts with 0. If x = ε then all words in
M starts with 0 and have a suffix equal to 1ω. Now for all y ∈ 1[k]∗ we have yM ≤ yN
since all the words in all languages are winning; for all y ∈ 0∗[k]∗ we have yM ≤ yN
because all the words in yM are losing since they start with 0 and have a suffix 1ω. If
instead x starts with 0 then there exists a word n ∈ N that contains infinitely many 0, for
every y ∈ [k]∗ the word yn will contain infinitely many 0 and it will be winning, thus for
all y ∈ [k]∗ we will have yM ≤ yN.

Now we prove that the goal is strongly concave. Consider x ∈ [k]∗, M,N ⊆ [k]ω and
K ⊆ [k]∗. We want to prove that x(M⊗s N) ≤ xM ∪ xN. If the r.h.s. of the inequality
contains a winning word, the inequality trivially holds. So, suppose that the r.h.s. does
not contain a winning word, so it cannot be x ∈ 1[k]∗ but it must be x ∈ 0[k]∗∪{ε}. If x
starts with 0, every word in M,N contains a suffix 1ω and all words in M⊗s N contain a
suffix 1ω. So, M⊗s N contains only losing words. If x = ε, every word in M,N contains
a suffix 1ω and starts with 0, so all words in M⊗s N contain a suffix 1ω and start with
0, and therefore they are losing. ut
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4 A Sufficient Condition for Half Positionality

In this section, we prove that determinacy, strong monotonicity and strong concavity
are sufficient but not necessary conditions to half positionality for player 0.

Theorem 2. All determined, strongly monotone and strongly concave goals are half-
positional.

Proof. The proof proceeds by induction on the number of edges exiting from the nodes
controlled by player 0 in the game arena. As a base case in the graph G for each node
controlled by player 0 there exists only one exiting edge. In such a graph player 0 has
only one possible strategy which is positional. So, the result is trivially true. Suppose
that in the arena there are n edges exiting from nodes of player 0 and that, for all graphs
with at most n− 1 edges exiting from nodes of player 0, if player 0 has a winning
strategy he has a positional one. Let t be a node of player 0 in G such that there is more
than one edge exiting from t. We can partition the set of edges exiting from t in two
disjoint non-empty sets Eα and Eβ. Let Gα and Gβ be the two subgraphs obtained from
G by removing the edges of Eβ and Eα, respectively. There are two cases to discuss.

First, suppose that in Gα or Gβ player 0 has a winning strategy. Then, by inductive
hypothesis he has a positional winning strategy. It is easy to see that such a strategy is
winning in G too. Indeed, since player 0 controls the node t, he is able to force the play
to stay always in Gα or Gβ. Suppose now that player 0 has no winning strategy in Gα

and in Gβ. We prove the thesis by showing that player 0 has no winning strategy in G.
By determinacy, there exist two strategies τα and τβ winning for player 1 in Gα and Gβ,
respectively.

Let σ be a strategy of player 0 in G, we show that there exists a strategy of player
1 in G winning in G against σ. If one of the plays P(σ,τα) or P(σ,τβ) does not pass
through t then that play is in Gα and Gβ and so it is winning for player 1 who is using
his winning strategy on one of the graphs.

Suppose now that both of the above plays pass through t. Let xα and xβ be re-
spectively the color sequences of the prefixes of P(σ,τα) and P(σ,τβ), up to the first
occurrence of t. Let Mα and Mβ be the sets of color sequences of suffixes after re-
spectively a prefix xα and xβ of plays consistent respectively with τα and τβ. Observe
that xαMα and xβMβ contain plays consistent respectively with τα in Gα and τβ in Gβ,
and such plays are losing for player 0. We prove now that either xαMβ or xβMα con-
tains only losing words for player 0. Indeed, if xαMβ contains a winning word, we have
that xαMα < xαMβ, since xαMα contains only plays losing for player 0. Then, by strong
monotonicity we have that, for all y∈C∗, it holds yMα ≤ yMβ and hence xβMα ≤ xβMβ.
Since xβMβ contains only losing words, so does xβMα.

Suppose without loss of generality that xβMα contains only losing words. Then, we
construct the strategy τ′α, which behaves like τα on all partial plays which do not have
a prefix xβ. When the partial play has a prefix xβ, it behaves like τα when it sees xα in
place of xβ. More formally τ′α(xβπ) = τα(xαπ), and in the other cases τ′α(π) = τα(π).
Let τ′

β
= τβ. We construct a strategy τ in G: at the beginning the strategy behaves like

τβ; when the play passes through t, depending on what subgraph the last edge from t
chosen by player 0 belongs to, the strategy τ behaves like τ′α or τ′

β
when they are applied
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only to the initial prefix up to t and all the loops from t to t, where the first edge belongs
to Gα or Gβ, respectively.

Formally, for all prefixes π that do not pass through t, we have τ(π) = τβ(π); if πi,γi

is a loop from t to t with first edge in Gγi , for all prefixes π = xπ1,γ1 , . . . ,πn,γnπγ, we
have τ′(π) = τ′γ(x(∏γi=γ πi,γiπγ)). The play P(σ,τ) coincides with P(σ,τβ) up to t, so
it has a prefix with color sequence xβ. After that prefix, the play develops in parallel
and alternates pieces of two plays: one in Gβ consistent with τβ, and the other in Gα

consistent with τ′α. So, the color sequence of the two suffixes are respectively in Mβ and
in Mα.1 Hence, the color sequence of the suffix after xβ of the play P(σ,τ) lies in the
shuffle of Mα and Mβ. By strong concavity we have that Col(P(σ,τ))∈ xβ(Mα⊗s Mβ)≤
xβMα ∪ xβMβ. Since both xβMα and xβMβ contain only losing words, we have that
Col(P(σ,τ)) is a losing word for player 0. Hence, for all strategies σ of player 0 there
exists a strategy τ of player 1 winning over 0. We conclude that player 0 has no winning
strategy. ut

Since strongly concavity implies concavity, the following result states that the con-
ditions appearing as the hypothesis of the previous theorem and of Theorem 1 are not a
complete characterizations for half positional goals.

Lemma 10. There exists a goal that is half positional but not concave.

Proof. The half positional goal is W = [k]∗1[k]∗1[k]ω. The goal states that player 0 tries
to make color 1 occur at least twice. It is half positional because in every point in a
play player 0 does not need to look at the past, but just tries to form a path that passes
through as many edges colored with 1 as possible. For a more formal proof, see Lemma
14.

We show that the goal is not concave: let x = ε, n,m = 10ω, then we have xn,xm 6∈W ,
but t = 110ω ∈ m⊗n with xt ∈W , hence the goal is not concave. ut

5 Selectivity

Here, we discuss how the properties presented in [GZ05] as a characterization of full
positionality relate to half positionality. We already presented monotonicity in the pre-
vious section. The second property introduced in [GZ05] is similar to the property of
strong concavity with the exception that in the shuffle the interleaving of words is al-
lowed only at certain points.

Definition 5. Let M ⊆ [k]∗. Then, with the notation 〈M〉 we define the set of all words
m ∈ [k]ω such that every prefix of m is a prefix of a word in M.

Definition 6. A goal W is selective iff for all x ∈ [k]∗ and for all regular languages
M,N,K ⊆ [k]∗ we have that x〈(M∪N)∗K〉 ≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉.

The two conditions of selectivity and monotonicity provide a complete character-
ization of full positionality. Precisely, a goal W is full positional iff both W and W

1 Note that it is possible that one of the two suffixes does not progress indefinitely.
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are selective and monotone [GZ05]. The proof makes use of the fact that, assuming
that player 1 uses a positional strategy, player 0 can play on the graph induced by that
strategy, and hence construct paths whose prefixes are recognizable by the automaton
described by the game graph. We investigated the hypothesis that monotonicity and se-
lectivity of W were sufficient to half positionality. However, the two conditions are not
directly applicable, since they operate on regular languages. Indeed, when player 1 can
use a non-positional strategy, the path constructed by player 0 is taken from a simple
graph no more and it does not belong to a language recognized by an automaton. Hence,
we strengthened the conditions of monotonicity and selectivity in order to take into ac-
count all possible paths that could be formed by player 0 together with a non-positional
strategy of player 1.

Definition 7. A goal W is strongly selective iff for all x ∈ [k]∗ and for all languages
M,N,K ⊆ [k]∗ we have that x〈(M∪N)∗K〉 ≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉.

Selectivity and strong selectivity represent two weaker properties than strong con-
cavity.

Lemma 11. Every strongly concave goal is strongly selective.

Proof. For all words x ∈ [k]∗, for all languages M,N,K ⊆ [k]∗, we have that x〈(M ∪
N)∗K〉 ⊆ x((〈M∗〉⊗s 〈N∗〉)⊗s 〈K〉)≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉.

Unfortunately, the strong versions of selectivity and concavity proved not to be
sufficient conditions to half positionality2.

Lemma 12. There is a strongly monotone and strongly selective goal which is not half-
positional.

Proof. Let k ∈N, for all colors i ∈ [k] and finite paths π, let |π|i be the number of edges
colored by i on π, and let |π| be the number of edges in π. Moreover for all n ∈ N
let π≤n be the prefix of length n of π. The strongly monotone and strongly selective
goal is the set W of all the infinite words m such that, for all colors i ∈ [k], the limit
limn→+∞

|m≤n|i
|m≤n| exists and is finite. The goal is prefix independent. Indeed, let π = xπ′

then for all i ∈ [k]∗ we have limn→+∞
|π′≤n|i
|π′≤n| = limn→+∞

|π≤n+|x||i−|x|i
|π≤n+|x||−|x| = limm→+∞

|π≤m|i
|π≤m| .

The goal is also strongly selective. Indeed, suppose by contradiction that there exist a
sequence x ∈ [k]∗, and three languages M,N,K ⊆ [k]∗ such that x〈(M∪N)∗K〉 contains
one winning word and x〈M∗〉∪ x〈N∗〉∪ x〈K〉 contains only losing words. In this case,
M and N must be empty else any periodic word π = mω ∈ M∗ ∪N∗ with m ∈ M ∪N
has a finite limit limn→+∞

|π≤n|i
|π≤n| = |m|i

|m| , for all colors i. So, the set 〈x(M∪N)∗K〉= x〈K〉
and contains only losing words which is a contradiction. The above goal is not half-
positional in the following arena ({u},{v},u,{(v,0,u),(v,1,u),(u,0,v),(u,1,v)}) with
k = 1 (Fig 1(c)). Player 0 can win with a strategy with memory by choosing from V ′ to
V the opposite of the color that player 1 chose from V to V ′ right before, thus yielding

2 We thank Zielonka and Gimbert for pointing out the counterexample
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a path in [k]∗(10)ω which has limit 1
2 for both colors. However if player 0 uses a posi-

tional strategy, it will only choose one color from V ′ to V , let suppose without loss of
generality that he chooses color 0. The player 1 can force a path π = ∏

+∞

i=0(00)2i
(10)2i

.
Then we have |∏l

i=0(00)2i
(10)2i |= ∑

l
i=0 4 ·2i = 4(2l+1−1), and |(∏l−1

i=0(00)2i
(10)2i

) ·
(00)2l |= 4(2l +2l−1−1). Moreover, |∏l

i=0(00)2i
(10)2i |1 = ∑

l
i=0 ·2i = (2l+1−1), and

|(∏l−1
i=0(00)2i

(10)2i
) · (00)2l |1 = ∑

l−1
i=0 ·2i = 2l − 1. So we have |∏

l
i=0(00)2i

(10)2i |1
|∏l

i=0(00)2i (10)2i |
= 1

4 ,

moreover |(∏
l−1
i=0(00)2i

(10)2i
)·(00)2l |1

|(∏l−1
i=0(00)2i (10)2i )·(00)2l |

= 2l−1
3(2l−1)+2(2l) = 2l−1

5(2l)−3 = 2l− 3
5

5(2l)−3−
2
5

5(2l)−3 < 1
5 . This

shows that in the limit |π
≤n|1
|π≤n| oscillates between 1

4 and something less than 1
5 . ut

Although the following theorem is obtained easily from the techniques developed
in [GZ05], we think that it is worth mentioning that half positionality on arenas con-
trolled only by player 0 is equivalent to the selectivity of the goal. Since the selectivity is
similar in a way to strong concavity, we show that strong concavity is a condition useful
to assert that, on decisions independent from player 1, player 0 prefers a fixed behav-
ior rather than switching between two different ones. We prove the above statement by
making use of the following lemma proved in [GZ05].

Lemma 13 ([GZ05]). Let A be a finite co-accessible 3 automaton recognizing a lan-
guage L⊂ [k]∗ and having starting state q. Then, 〈L〉 is the set of infinite color sequences
on the graph of A starting in q.

Theorem 3. A goal is selective iff it is half-positional on all arenas controlled by player
0.

Proof. [only if] Suppose that a goal W is half-positional on all game graph controlled
by player 0 but non-selective. Let x ∈ [k]∗ and M,N,K ⊆ [k]∗ be three recognizable
languages such that x〈(M∪N)∗K〉 6≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉. This means that there is a
winning word in x〈(M∪N)∗K〉 and x〈M∗〉∪ x〈N∗〉∪ x〈K〉 contains only losing words.
Let Gx,GM,GN be the minimized finite automata recognizing the languages {x},M,N,
respectively, and having only one starting state with no transition returning to it and one
final state with no transition exiting from it. Let GK be the minimized finite automaton
recognizing the language K, having only one starting state with no transition returning
to it. We construct the game graph G by combining together the graphs Gx,GM,GN ,GK .
Precisely we glue together the final state of Gx, the initial and final states of GM and GN
and the initial state of GK in a new node t. Observe that, by gluing together the initial and
final states, the automata GM,GN recognize M∗ and N∗, respectively. The initial state
of G is the starting state of Gx. Thus the graph G recognizes the language x(M∪N)∗K.
Hence by Lemma 13, every infinite path in G is in 〈x(M∪N)∗K〉= x〈(M∪N)∗K〉. Since
this set contains a winning word, there is a winning strategy for player 0. However, if
player 0 uses a positional strategy he cannot win. Indeed, player 0 reaches first the
node t by constructing the color sequence x on Gx. In the node t player 0 chooses

3 An automaton is co-accessible iff from every state there is a path reaching an accepting state.
It’s easy to see that a minimized automaton is co-accessible.
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once and for all which of the subgraphs GM,GN ,GK he will use, so the infinite play
will be of the form xm where m is an infinite path in GM ,GN or GK . By Lemma 13,
xm∈ x〈M∗〉∪x〈N∗〉∪x〈K〉. But this set contains only losing words. Hence, xm is losing.

[if] Suppose that a goal W is selective, we prove by induction on the number of
edges exiting from the nodes of the arena G controlled by player 0 that if there exists
a winning strategy for player 0 then there exists a positional one. As base case there
exists only one edge exiting from the nodes of G, hence player 0 has only one strategy,
which is trivially positional. Suppose that in the arena there are n edges exiting from
nodes of player 0 and that for all graphs with at most n−1 edges exiting from nodes of
player 0, if player 0 has a winning strategy he has a positional one. Let t be a node of
player 0 in G such that there is more than one edge exiting from t. We can partition the
set of edges exiting from t in two disjoint non-empty sets Eα and Eβ. Let Gα and Gβ be
the two subgraphs obtained from G by removing the edges of Eβ and Eα, respectively.
There are two cases to discuss. First, suppose that either in Gα or Gβ player 0 has a
winning strategy. Then, by inductive hypothesis he has a positional winning strategy. It
is easy to see that such a strategy is winning in G too, indeed player 0 is able to play
always in Gα or Gβ since he controls every node.

Suppose now that player 0 has no winning strategy in Gα and in Gβ. We prove the
thesis by showing that player 0 has no winning strategy in G. Let Mα and Mβ be the
sets of all finite color sequences from t to t and Kα and Kβ be the sets of all finite color
sequences starting from t, in Gα and Gβ, respectively. Such sets are regular languages:
Mα and Mβ are recognized by the automata having respectively Gα and Gβ as state
graphs, with starting node t and accepting set {t}. The sets Kα and Kβ are the languages
accepted by the automata with state graphs Gα and Gβ, respectively, with starting node
t and accepting set given by all the states.

Suppose now by contradiction that there exists a winning strategy for player 0 in G.
Then this strategy will form a winning path π. Such a path cannot be in Gα or Gβ, or
else player 0 has a winning strategy in one of those subgraphs. So the path is in G and
passes through t. Let x be the shortest prefix of π ending in t, then π belongs to the set
x〈(Mα∪Mβ)∗(Kα∪Kβ)〉, since it starts with x, then either loops forever from t to t in Gα

and Gβ, or possibly ends with an infinite path that never comes back to t. However, for
γ ∈ {α,β}, the sets x〈M∗γ 〉 and x〈Kγ〉 contain only paths in Gγ, so they are losing. Thus,
we have x〈(M∪N)∗K〉 6≤ x〈M∗〉∪ x〈N∗〉∪ x〈K〉, which contradicts selectivity. ut

After discussing monotonicity and selectivity we can formally complete the proof
of Lemma 10.

Lemma 14. Let k = 1, the goal W = [k]∗1[k]∗1[k]ω is full positional.

Proof. Using the characterization of [GZ05], we prove the statement by showing that
the goals W and W are selective and monotone. Observe that W is the set of all the
words having at least two 1’s and W is the set of all the words contain at most one 1.

1. W is selective. Suppose by contradiction that W is not selective. Then, there exist
x ∈ [k]∗ and M,N,K ⊆ [k]∗ such that x〈(M∪N)∗K〉= x〈(M∪N)∗〉∪x(M∪N)∗〈K〉
contains a winning word and x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉 contains only losing words.
Observe that no word in M or N contains 1, or else if m ∈ M ∪N contains a 1,
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Fig. 2. Summary of results. Continuous arrows represent a holding implication and dashed ones
a false one. Arrows are labeled with the corresponding lemma or theorem. Moreover, a gray box
represents a conjunction of conditions.

xmω ∈ x〈M∗〉∪x〈N∗〉 contains infinitely many 1’s and it is a winning word. So, the
words in the set x〈(M∪N)∗〉 do not contain 1 and they are losing. Moreover, since
x〈K〉 does not contain more than one 1, the words in x(M∪N)∗〈K〉 do not contain
more than one 1 and they are all losing too. So, the set x〈(M∪N)∗K〉 contains only
losing words, hence a contradiction.

2. W is monotone. Suppose by contradiction that W is not monotone. Then there exist
x,y∈ [k]∗ and M,N ⊆ [k]∗ such that xM < xN and yN < yM. So, xM and yN contain
only losing words, xN and yM contain a winning word. If x contains more than one
1, all words in the first two sets are losing, hence a contradiction. If x contains one
1, then no word in M contains 1. However, there is a winning word in yM, so y
contains two 1’s. Hence, yN contain only winning words, which is a contradiction.
If x does not contain a 1, there is a word in N with two 1’s. Hence, yN contains at
least a winning word, which is again a contradiction.

3. W is selective. Suppose by contradiction that W is not selective. Then, there exist
x ∈ [k]∗ and M,N,K ⊆ [k]∗ such that x〈(M∪N)∗K〉= x〈(M∪N)∗〉∪x(M∪N)∗〈K〉
contains a winning word and x〈M∗〉 ∪ x〈N∗〉 ∪ x〈K〉 contains only losing words.
Observe that no word in M or N does not contain 1, else if m ∈ M ∪N does not
contain a 1, xmω ∈ x〈M∗〉 ∪ x〈N∗〉 does not contain 1’s and it is a winning word.
So the words in the set x〈(M∪N)∗〉 contain infinitely many 1’s and they are losing.
Moreover, since x〈K〉 contains more than one 1, the words in x(M∪N)∗〈K〉 contain
more than one 1 and they are all losing. So, the set x〈(M ∪N)∗K〉 contains only
losing words, hence a contradiction.

4. W is monotone. Suppose by contradiction that W is not monotone. Then there exist
x,y∈ [k]∗ and M,N ⊆ [k]∗ such that xM < xN and yN < yM. So, xM and yN contain
only losing words, xN and yM contain a winning word. If x contains more than one
1, all words in the first two sets are winning, hence a contradiction. If x contains
one 1, then there is a word in N that does not contain 1’s. Since yN contains only
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losing words, y contains more than one 1. So, all words in yM are losing, hence a
contradiction. If x does not contain 1, then all words in M contain more than one 1,
so all words in yM are losing, hence a contradiction. ut

6 Conclusions

In this paper, we defined a new sufficient condition for half-positionality on finite are-
nas, which turns out to be strictly weaker (i.e., broader) than that defined by Kopczyński
in [Kop06], as long as determined goals are considered. We discussed the conditions
presented in [GZ05] for full-positionality and we proved that a stronger partial form of
them does not ensure half positionality.

The main open problem left by this research is the formulation of a complete char-
acterization of half-positionality. Another interesting question for further research is
whether or not the properties of strong monotonicity and strong concavity imply de-
terminacy. The answer to this question may simplify the statement of Theorem 2 by
removing the hypothesis of determinacy. Finally, another open problem consists in de-
veloping algorithms for checking whether a goal, given in input in some effective way
such as an automaton or a temporal logic formula, satisfies the conditions outlined in
this paper and is therefore HP. Such an algorithm may be used as a preliminary step in
controller synthesis tools, in order to estimate the amount of memory that the synthe-
sized controller will need.
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